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Abstract We identify two issues with searching literature
digital collections within digital libraries: (a) there are no
effective paper-scoring and ranking mechanisms. Without a
scoring and ranking system, users are often forced to scan a
large and diverse set of publications listed as search results
and potentially miss the important ones. (b) Topic diffusion
is a common problem: publications returned by a keyword-
based search query often fall into multiple topic areas, not
all of which are of interest to users. This paper proposes a
new literature digital collection search paradigm that effec-
tively ranks search outputs, while controlling the diversity
of keyword-based search query output topics. Our approach
is as follows. First, during pre-querying, publications are
assigned into pre-specified ontology-based contexts, and
query-independent context scores are attached to papers with
respect to the assigned contexts. When a query is posed, rel-
evant contexts are selected, search is performed within the
selected contexts, context scores of publications are revised
into relevancy scores with respect to the query at hand and
the context that they are in, and query outputs are ranked
within each relevant context. This way, we (1) minimize
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query output topic diversity, (2) reduce query output size,
(3) decrease user time spent scanning query results, and (4)
increase query output ranking accuracy. Using genomics-ori-
ented PubMed publications as the testbed and Gene Ontology
terms as contexts, our experiments indicate that the proposed
context-based search approach produces search results with
up to 50% higher precision, and reduces the query output
size by up to 70%.
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1 Introduction

At the present time, literature digital collection search que-
ries have two problems. First, ranking mechanisms/functions
for searched and located literature publications are either
ineffective or do not exist, forcing users to scan potentially
large numbers of publications and possibly missing impor-
tant ones. As examples, well-known literature digital col-
lection search portals, such as the ACM Portal [32] and
Google Scholar [11], use only simple text-based and/or cita-
tion-based scores to rank search results, and rankings are
hardly useful. PubMed [1], which contains more than 14 mil-
lion life sciences publications, lacks a paper-scoring system
to rank papers satisfying a keyword search. PubMed simply
lists search results in descending order of their PubMed ids or
publication years. Second, topics of publications returned as
a response to a keyword-based publication search query are
often diverse, and returned publications routinely fall into
multiple topics, leading to the problem of topic diffusion
across search results. Clearly, some of these topics may not
be of interest to users.
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278 N. Ratprasartporn et al.

In order to (i) effectively rank query output publications
of literature digital collection keyword-based search queries,
and (ii) provide controlled ways of eliminating query output
topic diversity, we propose a new literature digital collec-
tion searching paradigm, called Context-Based Search (CBS)
approach, as follows:

1. We perform two query-independent pre-processing steps
before any query session starts: assign publications into
pre-specified and possibly multiple ontology-based con-
texts; and compute context (importance) scores for
papers. Therefore, each context contains two types of
information: (i) the paper set of the context and (ii) the
context score of each paper.

2. Then, at search time, we perform the following steps.

(a) Select search contexts automatically (or manually,
by the user)

(b) Perform keyword-based search within the selected
contexts, and

(c) Within each context, compute relevancy scores of
located publications, re-rank search results, and
return the located publications

With the CBS approach, (i) search input includes only
papers residing in the selected contexts as opposed to all
papers (ii) search output is enhanced by a highly useful con-
text-based paper classification, (iii) topic diffusion across
search results is controlled, and (iv) query output sizes are
reduced to include only search results in the contexts of inter-
est.

Since the CBS approach performs a search within selected
contexts, some important results might be missing if they
are not in the selected contexts. As an alternative, step 2 of
the CBS approach is modified to include all search results
(CBS_all) as follows:

(a) Select search contexts automatically (or manually, by
the user)

(b) Perform keyword-based search across all papers to
select the publications to be returned

(c) For the returned papers that reside in the selected con-
texts, compute relevancy scores of these papers in each
context. For the papers that do not reside in any selected
contexts, group those papers together into a “remainder
context”

(d) Re-rank search results and return the located publica-
tions

The CBS (and CBS_all) approach can be characterized as
applying the Context-Selection-First strategy (i.e., step 2(a)).
We compare the CBS approach with an alternative approach,
called Search-and-Distribute to Contexts(SDC) approach:

1. Perform step 1 of the CBS approach
2. Perform keyword-based search across all the papers to

select the publications to be returned, and to select the
involved contexts (based on whether or not they contain
a query output paper)

3. Re-rank the selected publications within each located
context

In comparison with the current practice, the CBS approach
ranks papers based on the contexts of interest, increasing the
accuracy and consistency of the ranking. In comparison with
the SDC approach, the emphasis of the CBS approach is on
locating interesting contexts first, as opposed to presenting all
contexts that the results are in. The SDC approach is compa-
rable to existing systems that classify or cluster search results
to all possible relevant contexts [15,26,48–50] (see Sect. 3
for more details).

Finally, adapting an approach from [22], we also add user
interaction to context-based search. After each query execu-
tion, the context-based search engine returns a hierarchical
view of the involved contexts and per-context search results
as separately ranked lists of papers. After viewing the results,
the user can drill down/up in the context hierarchy, select
new contexts for the next query, and resubmit the revised
query.

We have evaluated the CBS and the SDC approaches
using genomics-related PubMed publications as the test lit-
erature digital collection instance. To define the contexts, or,
more correctly, context hierarchies, one can use two alterna-
tives.

• Use an existing (in our test case, biomedical) ontology
for PubMed-related contexts, or

• Automatically locate a context hierarchy from the exist-
ing publications of a literature digital library

In this paper, we have chosen the first approach. At the
present time, within the biomedical domain, there are a large
(>40) number of ontologies, defined and curated by domain
experts and available online—to reflect the needs of dif-
ferent Life Sciences communities [7]. Within the genomics
domain, Gene Ontology (GO) [2] is a well-known and highly
useful biomedical ontology, used for annotating genes and
gene products, and for various genomics-related data mining
tasks. GO consists of three separate controlled vocabular-
ies describing gene and gene product functionalities, one of
which is cellular activities. To evaluate our context-based
approach, we select the GO hierarchy as our context hierar-
chy. In other words, a context in our environment refers to a
GO term, and a given context paper set is pre-located based
on the semantic properties of the GO term.

Contributions of this paper are:
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• We propose query-independent algorithms and tech-
niques to (a) automatically populate the paper set of a
GO-specific context, and (b) compute context scores of
papers.

• To apply the context-based search to other publication
domains and ontologies, we present ways of generalizing
our approach to non-domain-specific contexts. In other
words, we provide algorithms that do not utilize specific
semantic properties of GO and PubMed.

• To assist users in context selections, we present non-
domain-specific approaches to automatically select
search contexts for a given query.

• After selecting contexts of interest, we present alterna-
tives to perform context-based search and to rank search
results within the contexts.

• While we recommend the context-based search result for-
mat (i.e., search results are presented as groups within
their corresponding contexts), we also provide an algo-
rithm to merge search results from multiple contexts into
a single result set.

• Using a large set of different keyword-based query types,
we evaluate the accuracy of the context-based approach
via recall and precision analysis. To calculate recall and
precision in an automated manner, we present an approach
to locate the A(rtificially)C(onstructed)- answer set for a
given query without any human expert help. To ensure
the accuracy of the AC-answer set approach, we present
a manual verification of its correctness.

For evaluation, a digital collection database is populated
with 72,027 genomics-based PubMed papers [8], and the
papers are assigned to one or more GO terms. Keyword-
based searches are performed within automatically selec-
ted contexts, and context-based search (CBS and CBS_all)
results are compared to (i) the SDC results, and (ii) the current
PubMed keyword-based search (PM) results. Experimental
results show the following:

• The CBS approach reduces the query output size by up
to 70% as compared to the PM approach. Compared with
the SDC approach, the CBS approach reduces the search
output size by up to 30%.

• The number of contexts returned from the SDC approach
(i.e., contexts that all of the search results reside) is very
large. Therefore, it is not practical for the user to navigate
through search results using this large set of contexts. On
the other hand, The CBS approach selects only contexts
that are relevant to the query; thus, the number of contexts
involved in the CBS approach is approximately 10 times
less than the SDC approach.

• In addition to reducing search result diversity and size,
the CBS approach produces accurate results. This is sig-
nified by the fact that the CBS approach produces search

results with comparable recall when considering a large
set of search results and up to 50% higher precision for
high ranking papers, as compared with the PM approach.
Compared with the SDC approach, recall and precision
are not significantly different. However, as mentioned
before, the number of search results and involved con-
texts are significantly reduced.

Section 2 is an overview of our context-based search
approach. Section 3 summarizes and compares our approach
with the related work. Section 4 presents techniques to pop-
ulate contexts with papers. In section 5, we describe meth-
ods to automatically select search contexts for a given query
term. Section 6 explains alternatives to search and rank search
results within contexts. Section 7 presents ways of merg-
ing results from multiple contexts. Sections 8 and 9 present
the experimental setup and experimental results, respectively.
Section 10 concludes.

2 Overview

The following sequence of algorithms is used to perform our
proposed context-based search approach:
(1) Populate_Contexts: Figure 1a, b presents two algorithms,
namely text-based and pattern-matching-based approaches,
which are employed to locate the paper set of a context (the
details are in Sect. 4).
Note that Populate_Contexts is pre-executed and not depen-
dent on queries.
(2) Evaluate_Query
(2.1) Select_Query-Contexts: Keywords specified in a key-
word-based search query constitute the search terms. Using
the search terms, we first select the contexts to search for.
Figure 2a, b summarize two algorithms, namely, text-based
and context-keyword-based query context selection algori-
thms (the details are in Sect. 5).
(2.2) Perform_Search_per_Selected_Context: The search
within each context is performed using a text-based similar-
ity measure between the given query term and papers in the
selected query context. And, publication results are ranked
separately within each context using their relevancy (scores)
to the query for each context. The relevancy score of a paper
in a context is defined as a combination of the paper-to-query
matching score and the pre-computed context score of the
paper. Figure 3 presents two algorithms (CBS and CBS_all)
to perform search, and rank search results within contexts
(the details are in Sect. 6)
(2.3) Merge_Query_Results: When multiple contexts are
selected for search, results are displayed separately under dif-
ferent contexts. In the case that the user wants to merge these
results, a merging function which assigns only one aggregate
score to each paper is presented. The new aggregate score of
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Fig. 1 Algorithms:
a Text-based and
b Pattern-Matching-based
Paper-Context assignments

Fig. 2 Algorithms:
a Text-based and
b Context-Keyword-based
query context selection

Algorithm Select_Text-based_Query_Context 
Input: 

q: query term (possibly multiple words)      
t: similarity threshold
//t is selected by the CBS system. 
wcentroid, wthreshold: similarity weights 

Output: 
A set of query contexts for query q 

for each context ci do begin 
//similarity between the centroid of ci and q
compute simcentroid(ci, q) 
//similarity between the context term and q
compute simContextTerm(ci, q)

if
centroid centroid

GOterm GOterm

w Sim(C , q)

w Sim(C , q)+

⋅

⋅
⎛ ⎞
⎜ ⎟
⎝ ⎠

t

then
add ci to query_context set; 

 endfor 
(a)

Algorithm Select_Context-Keyword-
based_Query_Context

Input: 
context_keyword[ci]: a list of keywords 

representing context 
ci, 1  i m 

k: an occurrences threshold 
//k is selected by the CBS system.     
q: query term (possibly multiple words) 

Output: A set of query contexts for query q 
for each context ci do

if k% of words in q appear in
context_keyword[ci] then

add ci to query_context set; 

(b)

a paper is computed using (a) the relevancy score of the paper
to the query in each context, and (b) the similarity between
each context and the query. Figure 4 presents the algorithm
used to combine search results from different contexts (the
details are in Sect. 7).

The context-based search paradigm is evaluated using
recall and precision analysis of multiple queries. To compute
recall and precision in an automated manner, we employ the
A(rtificially)C(onstructed)-answer set of a given query as fol-
lows. A standard keyword-based search with a high threshold
is used to find an initial answer set, which is then enlarged
iteratively using text-based (the first approach in Sect. 8.4.1)
and citation-based (the second approach in Sect. 8.4.1) expan-
sions. In the text-based expansion, papers that are sufficiently
similar to a paper in the initial set are added to the AC-answer
set. For the citation-based expansion, papers in the citation
path of length at most k from a paper in the initial set and
with high citation scores are included in the AC-answer set.
We verified the correctness of using the AC-answer set as

the true answer set manually, and have found it to be at least
95% accurate (Sect. 8.4.2).

Multiple search terms are selected to be used as query
keywords in keyword-based queries (Sect. 8.3). We evalu-
ate our approach based on the average and the median recall
and precision scores of search queries, and evaluate our con-
text-based approach and compare with existing approaches
(Sect. 9).

3 Related work

Currently, there are many literature search systems available
online, e.g., highly popular sites such as Citeseer [10] and
Google Scholar [11], professional society-related sites such
as IEEE Xplore [12], research prototype sites such as our
Case Explorer [13,14]. These systems rank search results
based on the relevancy to the query term and/or the impor-
tance of the papers, and do not use contexts to organize search
results. Similarly, Chen et al. [66] present a ranking approach
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Fig. 3 Algorithm: a CBS
search and b CBS_all search

(a) (b)

Algorithm Search_CBS 
Input: 

q: query term 
query_contexts: list of selected query 
contexts

Output: 
A set of search results within selected query 
contexts

for each paper p in each context c in
query_contexts do begin

Compute sim(p, q) as a text-based similarity 
   between p and q;
Compute relevancy_score(p, q, c) as a 
   combination of sim(p, q) and the context   
   score of p in c;

end for 
Rank papers in each context in descending order 
of their relevancy_scores and return;

Algorithm Search_CBS_All 
Input: 

q: query term 
query_contexts: list of selected query 
contexts

Output: 
A set of search results within selected 
query contexts

for each paper p in the database do begin
Compute sim(p, q) as a text-based 
similarity between p and q;

for each paper p in each context c in
query_contexts do begin

Compute relevancy_score(p, q, c) as a 
   combination of sim(p, q) and the 
   context score of p in c;

for each paper p not in query_contexts do
begin

Assign p to a remainder context; 
Use sim(p, q) as relevancy_score(p, q,  
remainder_context) 

end for 
Rank papers in each context in descending 
order of their relevancy_scores and return;

Fig. 4 Algorithm: Merge
Query Results

Algorithm Merge_Results 
Input: 
   q: query term 
   context_relevancy: list of similarity scores of each context to the query term 
   paper_context_relevancy: list of relevancy scores of each paper in each context to the query 

term  
Output: 
   An array of merged results with new relevancy scores 
for each paper p in the output of q do begin

     for each selected context ci where paper p resides do begin
          Compute new_relevancy_score(p) as a combination of 
               context_relevancy(ci, q) and paper_context_relevancy(p, ci, q); 
          Add p and new_relevancy_score(p) to the merged_result; 
     endfor
sort merged_results and return; 

with utilization of contexts. Their method, first, separately
searches distinct fields (e.g., title, abstract, authors, and pub-
lication venue) of publications and then, uses an artificial
intelligence method (neural networks) to aggregate the com-
puted similarity scores of all fields to user query.

In one contextual web search approach, a context is cap-
tured around the user-highlighted text, and augmented que-
ries are created from the selected context words [24,25]. This
approach is similar to our context-based search approach in
the sense that users can specify contexts of interests before
viewing search results. The main differences are that the con-
texts of this approach come from documents as opposed to a
pre-defined ontology-based hierarchy, and no structural and
hierarchical information are used.

Another technique, called TileBars [38,39], lets the user
enter a query in a faceted format (i.e., each line represents

each topic) and provides graphical bar in order to show the
degree of match for each facet. TileBars illustrate which parts
of each document contain which topic by dividing the bar into
columns, where each column refers to a part in the document.
The darkness of the square indicates the number of times the
topic occurs in the part of the document. With this approach,
the user can easily see the relevancy of the document to each
specified topics. However, search results are shown as one
list and no categorization of search results is provided.

A number of categorization techniques have been pro-
posed to make search results more understandable. Two
widely-used categorization techniques are document clus-
tering and document classification. Document clustering cre-
ates categories (or contexts) by grouping similar documents
together while document classification assigns documents to
a set of predefined categories [40].
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Document clustering can also be further classified as flat
clustering and hierarchical clustering [26]. For flat clustering,
Scatter/Gather [41] was one of the first clustering systems
on top of the information retrieval engine. Scatter/Gather
groups documents based on the similarities in their contents,
where a list of commonly occurring words in the cluster is
used to represent the cluster. Grouper [42] uses Suffix Tree
Clustering (STC) that identifies sets of documents sharing
common phrases. Lingo [43] uses singular value decompo-
sition (SVD) to find meaningful labels for the clusters. Lingo
3G is an implementation of the Lingo project [59]. Findex
[40] seeks for the most frequent words or phrases among
search results and use them to define categories, which are
displayed in a separate list beside the results. Zeng et al.
[44] use a supervised learning method to improve the per-
formance of search result grouping. All possible phrases are
extracted from the titles and web-snippets, and a score of each
phrase is computed using a regression model learned from
previous training data. Phrases with high scores are used as
cluster names. Desai and Spink [67] propose a clustering
scheme to group documents by relevance. The motivation
behind this study is that search query results (i.e. identified
relevant documents) are usually topically diffused. And, the
most highly relevant results may not always be listed at the
top of the ranked list and partially relevant results can be scat-
tered throughout the set. A major drawback of this study is
that the clustering step is performed online, which negatively
affects the scalability of a digital collection search engine.
In contrast, our approach identifies clusters (or contexts)
offline.

Another type of document clustering is hierarchical clus-
tering, which automatically derives a context hierarchy from
search results. SHOC [45] uses Suffix Array for extracting
sentences and organizes context hierarchy using SVD. Dis-
Cover algorithm [46] identifies at each level of the hierar-
chy topics that maximize the coverage while maintaining
the distinctiveness of the topics. CIIRarchies [47] builds sta-
tistical models of language to identify cluster terms in a
document set and construct the hierarchy using a recursive
algorithm. Several commercial systems, e.g., Vivisimo [48],
Clusty [49], Mooter [50], and iBoogie [60], also automat-
ically create hierarchical clusters of search results. Vivisi-
mo is one of the best web-clustering systems; however, little
descriptive information has been provided about this com-
mercial software. Snaket [26] is an open-source system in the
literature that achieves efficiency and efficacy performance
close to Vivisimo. Snaket uses two knowledge bases to select
and rank gapped sentences of variable length that are used as
cluster labels, and uses a bottom-up hierarchical clustering
algorithm to construct a folder hierarchy.

In addition to text clustering, Cha-Cha [51] and AMIT
[52] use hyperlinks to create contexts. Cha-Cha creates a
context hierarchy of search results by computing the shortest

hyperlink path from a root page to every web page. AMIT
shows all outgoing links from a starting root node.

Although clusters (or contexts) created from the clustering
techniques are closely related to search results, automati-
cally-constructed contexts are not as meaningful as well-
defined human-generated context hierarchy [15,53].
Another drawback of the automatically-constructed contexts
is that the user cannot select contexts of interest before view-
ing search results or modify search results beyond the con-
structed contexts.

Our context-based search approach is closely related to
several existing information retrieval systems that utilize
document classification techniques to improve the search
experience. DynaCat [53] aims to answer the questions in
the medical domain. A set of query types that cover typical
kinds of medical queries are created. For each query type, cat-
egory criteria are defined. DynaCat first maps the user’s ques-
tion to its manually-defined query types. Then, the returned
documents are organized by comparing keywords (or index
terms) of each document to the pre-defined category criteria.
The hierarchy is formed based on the position of the cate-
gories in Medical Subject Headings (MeSH) [34] hierarchy.
Compared to our context-based search approach, DynaCat is
more specific in the sense that queries must be in the form of
questions as opposed to general query terms. Moreover, Dy-
naCat requires human-generated keywords for each paper,
which are not always available.

Another IR system, Textpresso [54], utilizes 30 very shal-
low pre-defined categories, where parts of the categories
are GO terms. When the user of Textpresso defines query
keyword, he/she can select categories to make the search
more specific. Search results that contain a particular word
or phrase defined as a member of the selected categories
are then returned. GOPubMed [15] utilizes the Gene Ontol-
ogy hierarchy as a vehicle to navigate through search results.
GoPubMed queries are first submitted to PubMed, and the
corresponding PubMed paper “abstracts” are retrieved and
categorized by Gene Ontology terms. GOPubMed categori-
zation fully relies on the existence of GO term words in the
abstracts. Additionally, GoPubMed does not rank results or
provide importance scores for papers. The advantage of Text-
presso over GOPubMed is that Textpresso users can define
contexts of interest before viewing search results; therefore,
search results are reduced to include only papers in the selec-
ted contexts. The superiority of GOPubMed is the use of full
GO hierarchy as a tool to classify search results. Textpresso
returns only one ranked list of relevant abstracts, and the
ontology is not used to categorize search results. Our con-
text-based search approach combines the advantages of both
systems in that the user of our system can manually select
search contexts or let our system automatically select the
contexts that are relevant to query keywords. Then, the user
of our system has options to view all search results as one
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list or view only ranked search results in each individual con-
text. Since the number of contexts involved with all search
results can be very large (see Sect. 9.6), our context-based
approach is superior to GOPubMed because we present only
those contexts of interest, as opposed to all possible rele-
vant contexts. Another problem of Textpresso and GOPub-
Med is that they find the context terms directly in the text
during the classification process. As observed by the Pub-
Med Abstracts FullText Search Tool [13], only 78% of the 14
million PubMed abstracts contain words occurring in a GO
term (i.e., approximately 3 million PubMed papers have no
GO term association). Our approach uses more sophisticated
algorithms that allow the assignment of a relevant paper to
a context even when the paper does not contain the context
term (see Sect. 4).

Castells et al. [55] proposes the use of ontology to improve
the accuracy of search results. Specifically, a document is
annotated to an ontology concept if there are occurrences of
the concept labels in the document. Scores of documents in
contexts are assigned during the annotation using Term Fre-
quency-Inverse Document Frequency (TF-IDF) of the con-
text labels. An ontology-based query (i.e., RDQL [56]) is
required as an input of the search. Conditions in the query
are mapped to the ontology, and documents that are anno-
tated with the matched ontology concepts are ranked and
returned. Similar to our context-based approach, the assign-
ment of documents with scores to contexts are done as a
pre-processing step. However, unlike Castells’ approach, the
score of a paper in a context from our approach is not just
a TF-IDF score of the context term (see Sect. 4.3). More-
over, we use regular keywords as an input of the search as
opposed to a specific RDQL query. And, Castells’ approach
uses only an exact match when mapping the query to the
contexts, while our approach utilizes more information (e.g.,
terms in the context’s centroid, see Sect. 5) to rank and to
increase the number of matched contexts. Another differ-
ence between our approach and Castells’ approach is that
only one ranked list of search results are allowed in Cas-
tells’ approach, while our approach allows both merged and
per-context results.

PageRank [5,6,20] and HITS [6] can be used for cita-
tion-based paper score computations. PageRank recursively
determines the importance of a webpage (document) by
the number of links (citations) to it and the ranks of the
linking URLs (citing papers). Hyperlink Induced Topic
Search (HITS) is based on two types of special documents:
authorities and hubs. Authorities contain definitive high-
quality information. Hubs are documents that link to author-
ities. The paper’s HITS score is recursively determined.
Unlike PageRank, HITS scores are query-dependent. Sim-
ilar to the context score computation, Topic Sensitive Page-
Rank [21] creates 16 topic-sensitive PageRank vectors with
each vector biased by URLs in the top level of the Open

Directory Project (ODP [33]). However, the hierarchical
structure of the ODP is not considered during score
computation.

Besides improving search relevance, the notion of con-
texts can also be applied in other applications. For example,
in information theory, information content [19] of a con-
text is computed by counting the number of objects (doc-
uments) assigned to the context (concept). When a context
is mapped to a large set of objects, it is more general and
less informative. Pedersen et al. [61] adapt both path length
and information content approaches to measure the similarity
and relatedness between concepts in the biomedical domain.
The information content method is successfully applied to
measure semantic similarity of two proteins based on their
Gene Ontology annotations [62]. Maguitman et al. [63] uti-
lize the information content technique to compute the seman-
tic similarity between two documents that are stored in the
graph-based structure (context) of the Open Directory Pro-
ject ontology [33]. The notion of contexts is also successfully
used in searching literature digital collections to find related
publications of a given publication [64]. In this approach, the
relatedness between papers is computed using the relatedness
between contexts that the papers reside and the relatedness
between the contexts and the papers.

4 Classifying papers with scores to contexts

This section presents approaches to assign papers to their
relevant contexts, and to compute context scores of papers.
Obviously, the manual categorization (e.g., the Open Direc-
tory Project [33] or Yahoo! Directory [57]) is highly accu-
rate. However, manual assignment is not always available,
and very time-consuming. Several IR systems [15,54,55]
have used automatic approaches to classify documents to
pre-defined contexts as discussed in Sect. 3.

In this section, we presents two approaches, namely text-
based and pattern-extraction-based approaches, to automat-
ically locate papers of contexts, called p(aper)-clusters.

The first approach uses text-based similarity measures,
such as cosine similarity of the vector space model [9], to
locate papers that are sufficiently similar to a given context.
The text-based approach presented in this paper is adapted
from the nearest neighbor learners technique [3], which
classifies a paper to a context if the paper and the context’s
training paper(s) or the context’s (semantic) centroid are suf-
ficiently similar. The second approach constructs patterns
from a context’s training data set and uses those patterns
to locate the p-cluster of the context. To provide a compar-
ative assessment of papers in a context, we present three
different context score functions. Finally, we generalize the
approaches to non-domain-specific contexts.
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4.1 Text-based measures for locating p-clusters

One way to assign papers to a context is to include only those
papers with occurrences of the context term or with suffi-
ciently high text-based similarity scores to the context term
(or its synonyms). However, since a context is represented by
a short phrase, which is much shorter than papers, incorrect
assignments may occur. Instead of using the context term,
our approach is first to select a representative paper or a set
of representative papers that characterizes the context. Then,
text-based similarity measures are applied to locate papers
that are sufficiently similar to the representative paper(s) of
the context. However, the representative paper might be long,
and may contain paragraphs not relevant to the context. Our
approach is to extract significant paragraphs of the repre-
sentative paper and construct a “new revised representative
paper” of the context by removing all the insignificant para-
graphs.

After assigning papers to contexts, some papers in the
database might not be associated with any context. These
papers are assigned to contexts using an approach similar to
the K-Means algorithm [3], i.e., contexts whose centroids are
“sufficiently similar” to the remaining paper p are assigned
as the contexts of p.

In a context hierarchy in general, descendant context terms
are more specific than their ancestor context terms. Hence,
p-clusters of descendant contexts are also relevant to ancestor
contexts. Therefore, after the paper assignment to a context c,
by default, all papers in the p-clusters of descendant contexts
of c are also included in the p-cluster of c.

4.1.1 Selecting representative paper

A large number of genes have been annotated with GO terms
by domain experts. And, for each annotation, an evidence
paper and its corresponding evidence code are specified as
a support for the annotation. We refer to all the evidence
papers that are used to annotate different genes with a given
GO term as the evidence papers (or, base papers) of the GO
term itself. We then select a representative paper for a con-
text from the evidence papers of that context. Then, papers in
the database that are sufficiently similar to the representative
paper of the context are assigned to the context’s p-cluster.

For GO contexts with no base papers, the representative
paper for the GO context is located as follows. GO terms at
the same hierarchical path of the GO hierarchy are related to
each other (mostly through the is-a relationship), and, thus,
the base papers of the ancestor/descendant contexts of a given
context are also relevant to that context. Therefore, for a GO
context with no base papers, the base papers of its children
and its parent contexts are selected. If no such papers exist,
we move up and down one step in the hierarchy until we find
base papers.

Among the base papers of a context, one paper is chosen
to be a representative paper of the context as follows. First,
we choose only base papers with the most reliable evidence
codes of TAS (Traceable Author Statement) or IDA (Inferred
from Direct Assay) [18]. If no such paper exists, all evidence
papers are used. Afterwards, we use the context term and
its synonyms to locate the representative paper. Intuitively, a
paper whose text contains a large number of occurrences of
the context term and its synonyms is highly relevant to the
context. After counting the occurrences of the GO term and
its synonyms in each base paper, our approach selects the
paper with the highest occurrences score, which is defined
as

Occurrences_Score = n

N
(4.1)

where n is the number of times the context term appears in
the paper, and N is the length of a vector representing the
paper.

If there are no base papers containing all the context term
words (perhaps because some terms are very long) then new
shorter term(s) are constructed from the original term by

(i) Splitting the term words before and after a comma,
conjunction, and preposition, and/or

(ii) Removing phrases within parentheses.

Example The term “signal transduction during filamentous
growth” is split into two terms “signal transduction” and “fil-
amentous growth”.

With these new terms, Occurrences_score becomes

Occurrences_Score =
∑

i ni

N
(4.2)

where i represents each new term.
The representative paper has the highest Occurrences_

Score among base papers, and thus best describes the con-
text. However, it is possible to have a case where there are
only few PubMed papers that are similar to the representative
paper. To increase the number of papers in each context, base
papers with k highest Occurrences_Score values are selected
as the new set of representative papers.

4.1.2 Selecting significant paragraphs

Using a representative paper to locate the context’s p-cluster
may not always work: Occurrences_Score of the represen-
tative paper may be the highest among the base papers, but
only a few paragraphs may be relevant to the context. An
alternative approach is to extract and utilize only significant
paragraphs as follows. First, context term and its synonyms
are split to a set of significant words. After removing stop-
words and frequent words, representative paper paragraphs
with a significant word are chosen as significant paragraphs.
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Fig. 5 Middle-joined pattern
construction
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Finally, significant paragraphs are combined together to form
a “new” shorter representative paper. Papers in the database
that are sufficiently similar to this new representative paper
are then included in the p-cluster of the context.

Selecting significant paragraphs is completely automated.
It is also domain independent since this task utilizes only con-
cept names and synonyms (if available), and concept names
are essential pieces of information that each ontology (or
concept taxonomy) must retain.

4.2 Pattern extraction for locating p-clusters

This section presents a pattern extraction technique that con-
structs patterns from a context’s training data set (i.e., base
papers for GO-specific contexts). The constructed patterns
are then used to assign papers to contexts. Significant terms
(phrases), which are terms related to a context, are con-
structed from two sources: (i) words in the context term, and
(ii) frequent terms (phrases) located in the training papers.
During the frequent phrase construction, significant terms
from each source are combined using a procedure similar to
the apriori algorithm [16]. In order for a frequent phrase to
be significant, the candidate phrase must have enough sup-
port, i.e., the ratio of training papers containing the phrase
to the whole training set size. This procedure is repeated to
construct larger frequent phrases until no more new phrases
can be created.

Patterns are constructed from significant terms as follows.
A pattern of a term consists of three tuples [4]: <Left>
<Middle><Right>, where each tuple is a set of words. Sig-
nificant words (i.e., words in the significant terms) appearing
in the training data are assigned to <Middle> tuple. Words
surrounding the significant words are assigned to <Left>
and <Right> tuples. The number of words for <Left> and
<Right> tuples are determined by a window size.

Based on patterns constructed above, extended patterns are
constructed by virtually walking from one pattern to another.
Depending on the type of the walk, two different extended
patterns are built: (i) side-joined, and (ii) middle-joined pat-
terns.

A side-joined pattern is created when there is an over-
lap between the left tuple of one pattern and the right tuple

of another pattern. E.g., if P1 = <A><B><C> and P2 =
<C><D><E>, then the side-joined pattern P3 =<A>

<B><C><D><E> is constructed.
A middle-joined pattern is created when there is an overlap

between the middle tuple of one pattern and the left or right
tuple of another pattern. Middle-joined pattern construction
is illustrated in Fig. 5.

After constructing the context’s patterns, papers contain-
ing pattern occurrences are added to the context’s p-clus-
ter. For contexts with no or few training papers, we use the
context hierarchy. Descendant context’s papers are included
with the ancestor context. If the context is still empty, then the
closest ancestor’s paper set is assigned to the context. Since
the ancestor of a context term is less informative, assign-
ing papers from an ancestor context to one of its descendant
contexts introduces a decay of informativeness for the con-
text term. Informativeness of a context is approximated by
its information content, I (C), which is defined as [19]

I (C) = log

(
1

p(C)

)

(4.3)

where p(C), the “relative size” of C in the context, is approx-
imated by:

p(C) = (# of C’s Descendants)

(total # of context terms)
(4.4)

In order to quantify the rate of decay, we compare the infor-
mation content, I (C), of the descendant term (Cdesc)to its
ancestor (Cancs) and adjust the papers’ scores. Rate of decay
is defined as

RateOfDecay(Cancs, Cdesc) = I (Cancs)

I (Cdesc)
(4.5)

4.3 Assigning context scores to context papers

Next we discuss two different score functions to compute the
context score of paper p in context c [23]:
Text-based context score function: The text-based context
score of a paper in each context is computed using text-based
similarity measures based on the Term Frequency-Inverse
Document Frequency (TF-IDF) model [9]. In each context
c, a paper p’s context score is defined as the text-based simi-
larity score between c’s representative paper and p. In other
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words, papers in c that are highly similar to the representative
paper of c receive high context scores.

As described in Sect. 4.1.1, a set of representative papers
may be used to locate the p-cluster of c. In that case, the
context score of p in c is computed as

Score(p) = max
pr ∈R(c)

(sim(pr , p)) (4.6)

where R(c) is the set of representative papers of c, and
sim(pr , p) is the text-based similarity between p and pr ,
one of the representative papers of c.
Pattern-based context score function: After constructing pat-
terns of ci as described in Sect. 4.2, the context score is
assigned using (1) the confidence that a pattern represents
ci , and (2) the matching strength between p and the pattern.
That is

Score(p) =
∑

pt∈Ptr(P)
Score(pt) ∗ M(p, pt) (4.7)

where Ptr(p) is the set of patterns that match to paper p,
Score(pt) is the score of pattern pt, and M(p, pt) is the match-
ing strength of pattern pt in paper p.

M(p, pt) is influenced by the (1) paper paragraph contain-
ing the pattern match, and (2) similarity between the pattern
(i.e., pt) and the matching phrase in p.

Score(pt) is computed based on the following middle tuple
properties [4,23]:

• Middle tuples consisting of only frequent terms, only the
context term, or both frequent and context terms, receive
the high, higher, and the highest scores, respectively.

• Context term words with higher selectivity receive a
higher score. Selectivity describes the word’s occurrence
frequency among all context terms.

• A pattern’s score is inversely proportional to the middle
tuple frequency among all the database papers.

• Higher scores are assigned to patterns whose middle
tuples are frequent in the context’s training papers.

Since contexts are represented hierarchically, a paper p
can reside in both context ci and ci ’s descendant contexts.
Compared to ci , ci ’s descendant contexts are more specific,
and the descendant contexts’ paper sets are less diverse.
Hence, a high context score for p in ci ’s descendant
contexts means that p is highly relevant to ci . Therefore,
regardless of context score function choice, a final score com-
putation step takes place as follows. Let p reside in context
ci with score si , and descendant contexts ck . . .cn of ci with
scores sk, . . ., sn . Then p’s score in context ci is modified as
max(s j ), j ∈ {i, k, . . ., n}.

In the experimental results sections, we use (1) the text-
based score function when papers are assigned to contexts
using the text-based approach (as described in Sect. 4.1), and
(2) the pattern-based score function when the paper-context

assignment is done using the pattern-extraction-based
approach (as described in Sect. 4.2). In addition to text- and
pattern-based score functions presented in this section, we
proposed another score function, called citation-based score
function, in our previous work [23]. The citation-based score
is computed using a variation of the PageRank algorithm
[5,6,20]. However, we have decided not to present the results
involving the citation-based score function because it is less
accurate than the text-based and the pattern-based score func-
tions in a context-based environment [23]. More specifically,
citation-based scores give good results in terms of accuracy
and score distribution for the upper level (i.e., more general)
contexts. However, as we drill down in the context hierar-
chy, the number of papers and citations within the contexts
are reduced. Therefore, papers of these contexts cite or are
cited by large numbers of papers outside the contexts. This
causes the citation graphs to be sparse within those contexts,
which negatively affects the accuracy and score distribution
of the citation-based score function. Another possible reason
is that citing and cited papers may not be topically related to
each other. Therefore, citations in a context may not always
indicate that citing/cited papers are important with respect to
the context [23].

4.4 Generalizing the approach: removing
GO- and PubMed-related specifics

Approaches presented in Sects. 4.1–4.3 use the GO-specific
notion of evidence papers in choosing the representative
paper of a context and the training data set for patterns. To
generalize the overall approach, we present a non-domain-
specific method to define: (a) a representative paper for the
text-based approach (Sect. 4.1.1), and (b) a training data set
for the pattern-based approach (Sect. 4.2).

Representative paper for text-based approach
Context C’s representative paper is identified as follows:

(i) Send C’s (and C’s descendant contexts’) terms and
synonyms to text-based search engine(s), and retrieve
a set of papers, called S, with high similarity scores.
If the number of papers in S is too small, C’s parent
context terms and synonyms are used.

(ii) For each paper in S, construct a corresponding Term
Frequency-Inverse Document Frequency (TF/IDF) [9]
vector. When step (i) includes parent contexts, a weight
is assigned to reduce the TF/IDF scores in the vec-
tor representing each paper from each parent context
because a parent context is more general than the con-
text itself. The weight is defined as the Rate of decay of
the parent context when compared to C (see Eq. (4.5)
for the definition of the Rate of decay).

(iii) Compute the centroid of all retrieved papers, and use
the highest k terms as a (virtual) representative paper
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of C . The value of k is defined as the average number
of terms in the papers in S.

The length of the context term, which is much shorter
than the papers, may negatively affect the text-based simi-
larity. We reduce the effect of short context terms by setting
a high similarity score in step (i). While not all papers rele-
vant to the context receive high text-based similarity scores,
a high scoring paper (i.e., a paper with a large number of
occurrences of the context term words) is considered to be
related to the context.

By adjusting the TF/IDF scores of the parent contexts
in step (ii), we ensure that information from more general
contexts (i.e., the parent contexts) are less important when
constructing the (virtual) representative paper of the context
in step (iii).

Training papers for pattern-based approach
Frequent papers in S, where S is computed as in step (i)
above, are used as context C’s training papers. A paper p’s
frequency, F(p), is defined as

F(p) = # contexts containing p

# contexts
(4.8)

where contexts refer to C and its descendant contexts, and
each context contains a subset of S’s papers returned from
step (i) above, p ∈ S. Only papers with high frequency are
included in C’s training data set.

When C is at the upper level in the context hierarchy, C
is a general term and the training data set of C should cover
broad areas related to C (i.e., a number of C’s descendants).
However, If C has no or few descendant contexts (i.e., C is
a leaf context or a context at a high level in the context hier-
archy), C’s term is usually very specific. In this case, all of
the papers in S are considered relevant to C and included in
the training paper set of C . We use the relative size of C (as
defined in Eq. (4.4)) to define the specificity of C, and we
apply Eq. (4.8) only when C is not specific. Otherwise, we
include all papers.

After locating the training papers of C , the patterns of C
are constructed by using C’s term and C’s training papers (as
described in Sect. 4.2).

5 Selecting contexts for keyword search

A context-based search query term is any set of keywords.
After mapping a given query to a set of query contexts, we
perform the search and rank search results within these con-
texts. Note that users may also manually provide a set of
query contexts; however, it may not be easy for the users to
select query contexts when the number of available contexts
are very large (e.g., approximately 20,000 for GO contexts).

To guide users in context selection, next we present two
approaches to select query contexts automatically for a given
query term. A hierarchical view of the automatically selected
query contexts are then shown to the users. After viewing the
query contexts, the users can drill down or up in the context
hierarchy and manually modify query contexts.

5.1 Text-based similarity between context and search term

Our first automated context selection approach uses a text-
based similarity measure. Intuitively, a context whose term or
p-cluster is very similar to the search term should be included
in the query contexts. Therefore, each context is represented
by three components: the context term, its synonyms, and the
centroid of the context’s p-cluster. In this approach, query
contexts refer to contexts whose components are sufficiently
similar to the query term. We compute text-based similarity
between (1) each context’s centroid and a query term, and (2)
each context term plus its synonyms and a query term. Then,
both scores are combined as a text-based similarity score of
context C and query q as follows:

SimCentroid_ContextTerm(C, q)

= wcentroid · Sim(Ccentroid, q)

+wContextTerm · Sim(CContextTerm, q) (5.1)

where wcentroid and wContextTerm are the centroid and
context term weights, respectively, we select wcentroid >

wContextTerm since the centroid is longer than the context term,
which increases the chance of the match to q, wcentroid +
wContextTerm = 1 (see Sect. 9.2 for the evaluation), Sim refers
to the cosine similarity, Ccentroid is the centroid of C’s p-clus-
ter, and CContextTerm is the context term and its synonyms.
Each context term can have multiple synonyms, and high
similarity between a synonym and q means that the context
is highly related to q. Sim(CContextTerm, q) is computed using
both the context term and its synonyms as

Sim(CContextTerm, q) = Maxi (wi · Sim(ti , q)) (5.2)

where ti refers to the context term or each of its synonyms,
wi is the weight of ti . For GO-specific contexts, GO web-
site defines multiple types of synonyms: “Exact”, “Narrow”,
“Broad”, and “Related” [2]. For example, the GO term “malt-
ose catabolic process” has five synonyms: four “exact” syn-
onyms include “malt sugar catabolic process”, “malt sugar
catabolism”, “maltose breakdown” and “maltose degrada-
tion”, and one “narrow” synonym, “maltose hydrolysis”. Not
all types of synonyms are equally important. Thus, a weight
wi is assigned to each synonym type. For experimental eval-
uation, the following weights are found to perform the best.

• wi = 1 when ti is a GO term or Exact synonym
• wi = 0.9 when ti is a Broad or Narrow synonym
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• wi = 0.8 when ti is a Related synonym.

For non-GO contexts, we assign wi = 1.
Finally, given a query term q, those contexts with suffi-

ciently high SimCentroid_ContextTerm scores (see Eq. (5.1)) (i.e.,
higher than a threshold t) are selected to be the query con-
texts of q. In the experiments, t = 0.05 is found to be the best
value.

5.2 Occurrences in context keywords

Our second automated context selection approach utilizes
context keywords. After defining context keywords for each
context, we choose those contexts whose keywords occur
frequently in the search term.

The motivation for our approach comes from web com-
puting. In Hyperlink-Induced Topic Search (HITS) [6], a
root set of documents is obtained after sending a query to a
text-based information retrieval system. Although the query
words rarely occur near good links (URLs) in many web
pages, the centroid of the root set features terms near good
links with large weights [3]. Hence, the largest components
of the root set centroid vectors are extremely intuitive. Con-
sidering papers in each context as a root set of the context,
terms with the largest TF-IDF [9] values in the root set cen-
troid vector are then used as the context keywords. Steps to
compute the context keywords are: (1) compute context cen-
troid; (2) select top-k words from the centroid to be context
keywords; and (3) add every word of the context term (and
its synonyms) to the context keywords.

Next, for each query term, each word in the term is stem-
med, stopwords are removed, and contexts containing more
thank%of the“querywords” in“contextkeywords”areselec-
ted. Finally, those contexts with sufficiently high similarity
scores (i.e., higher than a threshold t) between context C and
query q , namely, Simkeywords(C, q), are selected, where

Simkeywords(C, q) = n

N
(5.3)

n is the number of “query words” that appear in “context key-
words”, and N is the number of “query words”. For exper-
imental evaluation, threshold t = 0.3 is found to be the best
value.

6 Search and rank search results within query contexts

As discussed in the introduction, there are two alternatives to
perform context-based search after selecting query contexts.
The first alternative (CBS) performs search within the selec-
ted query contexts. In other words, only papers that reside
in the query contexts are involved in the search. Then, in
each context, search results returned from the keyword-based
search are ranked by their relevancy scores with respect to

the context and the query term. The relevancy score of paper
p to query q in context ci is computed as

R(p, q, ci ) = wcontext · Context_Score(p, ci )

+wmatching · Text_Matching_Score(p, q)

(6.1)

where context_score(p, ci ) is the context score of p in con-
text ci (see Sect. 4.3 for the formula), text_matching_score(p,
q) computes the similarity (e.g., cosine similarity [9]) bet-
ween p and q, and wcontext and wmatching are weights of
the context score and the text matching score, respectively.
wcontext + wmatching= 1. By default, we define wmatching >

wcontext (i.e., we used wmatching = 0.8 and wcontext = 0.2 in
the experiments). In this definition, the text-matching scores
between the query keyword and the papers are considered
more important than the context scores of the papers. How-
ever, the weights can be adjusted based on users’ preference.
For example, if the user wants to increase the significance
of the contexts, wmatching will be reduced while wcontext will
be increased, and search results within the contexts will be
ranked with respect to the new weights.

While the CBS approach reduces search input size and
returns only papers in the contexts of interest, some important
papers may be missing if they are not in the selected query
contexts. The second alternative, called CBS_all, performs
a keyword search across all papers (as opposed to papers
within query contexts). Then, search results are grouped and
ranked with respect to the query contexts using equation 6.1.
Papers that do not reside in any query context are grouped
together in a “remainder context”. Papers in the remainder
context are ranked with respect to their text-matching scores
to the query keyword. Compared to the CBS approach, the
CBS_all approach includes all papers returned from the key-
word-based search; therefore, recall (see section 8.2 for the
definition of recall) is preserved. However, the CBS approach
searches and returns only papers within selected contexts;
thus, search input and output sizes are reduced.

In order to better suit users’ needs, users can decide bet-
ween CBS and CBS_all. However, users are not required to
know the details of both processes. Instead, users are asked if
they want to (1) perform a search within a set of papers that
are related to their queries and selected contexts (i.e., lower
recall, faster response time, and smaller output size), or (2)
perform a search across all papers (i.e., higher recall, slower
response time, and larger output size). If a user chooses option
(1), CBS is performed; otherwise, CBS_all is employed.

7 Merging query results from multiple contexts

As stated in the introduction, added value exists in listing
separately (1) search results individually for each query
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context, and (2) different relevancy scores for the same paper
in different contexts. With multiple query results, users ben-
efit from viewing search results in each context separately as
well as a follow-up interactive drill down/up in the context
hierarchy to revise query contexts for the next search. Having
said this, users may want to view a single result set indepen-
dent of the individual searched contexts. To effectively rank
search results for the latter case, scores of a paper residing in
multiple contexts need to be merged into a final score, which
is discussed next.

When appearing in multiple contexts, paper p’s overall
relevancy score R(p, q) to the query q is computed using
(1) the relevancy score of p to q in each context, and (2) the
relevancy of each context containing p to q, as follows:

R(p, q)

=
∑n p

i=1(wPaperRelevancy · R1(p, q, ci ) + wcontext · R2(ci , q))

n p

(7.1)

where R1(p, q, ci ) is the relevancy score of p to q in the con-
text ci (Eq. (6.1)), R2(ci , q) is the relevancy score of the con-
text ci to the query q (see below), n p is the number of contexts
that contain p, wPaperRelevancy and wcontext are the weights
of R1and R2, respectively, wPaperRelevancy + wcontext = 1. We
define wPaperRelevancy > wcontext (i.e., we used wPaperRelevancy

= 0.6 and wcontext = 0.4 in the experiments). Although we
selected fixed weight values in the experiment, we found
that changing weight values does not significantly change
the accuracy of the search (see Sect. 9.2 for more details).

In Sect. 5, query contexts are selected based on the rel-
evancy between the contexts and the query term. For auto-
matically-selected query contexts, Eqs. (5.1) and (5.3) are
used to estimate R2(c, q). As described in Sect. 5, users may
also manually modify selected query contexts. In such cases,
sometimes, query-context relevancy scores (from Eqs. (5.1)
or (5.3)) of the manually-selected contexts may be low. As
an alternative, users are allowed to define the importance of
the manually-selected contexts as high (score = 1), medium
(score = 0.5), or low (score = 0.1). For the CBS_all approach,
a remainder context relevancy score is 0. Therefore, papers in
the remainder context are usually ranked lower than papers
in the query contexts.

Finally, each returned paper p is assigned a single rele-
vancy score, R(p, q). The paper results are then sorted by
these scores and returned to the user.

8 Experimental setup

We downloaded, parsed, and populated our database with
information from 72,027 full-text PubMed papers. All selec-
ted papers came from the genomics area, which constitutes

a “semantically related” subset of PubMed papers related to
GO [8].

8.1 Locating P-clusters of contexts

In Sects. 4.1 and 4.2, we presented two approaches to create
p-clusters of contexts, namely, text-based and pattern-extrac-
tion-based approaches. These two approaches were utilized
to construct two p-cluster sets for our experimental evalua-
tion: text-based p-cluster set, which was created using the
text-based approach (as discussed in Sect. 4.1) and pattern-
based p-cluster set, which was created using the pattern-
extraction-based approach (as described in Sect. 4.2).

The context-paper statistics of p-cluster sets 1 and 2 are
presented in Table 1.
Observation: Pattern-based p-cluster set yields the higher
number of papers per context than text-based p-cluster set.

Therefore, pattern-based p-cluster set requires higher stor-
age space. Moreover, pattern-based p-cluster creation is more
expensive than text-based p-cluster creation. More specifi-
cally, the pattern-based approach first creates multiple pat-
terns for each context. Then, occurrences of these patterns in
database papers are found. Therefore, the cost of the pattern-
based approach is p∗c∗n, where p is the number of patterns
in a context, c is the number of contexts, and n is the number
of papers in the database.

For the text-based approach, we compute the text-based
similarity between the representative papers of each context
and the papers in the database. Thus, the cost of text-based
p-cluster creation is r ∗ c ∗n, where r is the number of repre-
sentative papers in the context (note that r is usually a small
number, close to 1), c is the number of contexts, and n is
the number of papers in the database. As compared with the
pattern-based approach, p, the number of patterns, is usually
much larger than r (i.e., p is usually larger than 10, on the
average).

8.2 Accuracy evaluation

To evaluate the accuracy of the context-based search
approach, recall and precision scores of selected queries are
used. Given a search term t as a query, its recall and precision

Table 1 Papers per context information

Per context info p-Cluster set

Text Pattern

Max no. of papers 55218 56750

Mean no. of papers 230.83 796

Median no. of papers 55 182
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are defined as

Recallt = |St ∩ Rt |
|Rt | (8.1)

Precisiont = |St ∩ Rt |
|St | (8.2)

where St is the search result set for query term t , and Rt is the
correct answer set for t . In addition to recall and precision,
we used the harmonic mean F1, which combines recall and
precision. F1 is defined as

F1t = 2
1

Recallt
+ 1

Precisiont

(8.3)

8.3 Selecting search terms

We used two search term sets in the experiments: GO-related
set and MeSH set. Both search term sets are elaborated as fol-
lows.

Since the subset of PubMed papers that are in our database
and used in the experiments were chosen from PubMed jour-
nals and are “semantically related” to GO, we first selected
search terms to be somewhat related to the GO terms. We
call this search term set, GO-related set.

The GO site contains manual expert-based mappings of
non-GO (“external”) concepts from external classification
systems, (e.g., SWISS-PROT keywords [30], TIGR roles
[31], etc.) to equivalent GO terms [2]. Search terms in the
GO-related set are selected from the external concepts as fol-
lows. Approximately 400 search terms are selected randomly.
To ensure that the search terms used in the experiments are
relevant to some papers in our database, all the selected terms
are submitted to a text-based information retrieval system,
and approximately 120 terms that contain at least one paper
with matching scores above a threshold are chosen. Examples
of the selected terms are Formate dehydrogenase, Histone
deacetylase and Innate immunity.

Although search terms in the GO-related set are well-
suited to our choice of papers and context hierarchy, there
is no gold standard to define the correct result set (Rt of
Eqs. (8.1) and (8.2)) for each search term in this test set (see
Sect. 8.4 for details of GO-related set evaluation). Therefore,
we created another test set, called MeSH set, whose correct
answer set of each search term has been chosen by domain
experts.

For the MeSH set, we selected randomly approximately
170 Medical Subject Headings (MeSH) terms [34] to be used
as search terms in the experiments. In PubMed services [1],
skilled subject analysts have assigned relevant MeSH terms
to each PubMed paper. In other words, if a MeSH term is
annotated to a paper, that paper is known to be relevant to
the term by domain experts. Therefore, one can use the set

of annotated papers as the “correct search result set” when
the search term is the MeSH term itself.

By using a MeSH term (t) as a search term, we define
Rt (or the correct answer set of the search for term t) of
Eqs. (8.1) and (8.2) as a set of papers that are annotated with
the term t .

Examples of the selected search terms are Acute-Phase
Reaction, Bone Morphogenetic Proteins, Fibroblast Growth
Factors, Histone Deacetylases, and Phagocytosis.

8.4 Finding AC-answer set of a query without expert help

To evaluate and compare different approaches for keyword-
based querying, clearly, the best approach is to obtain true
answer sets of queries manually via domain expert judg-
ments. However, such an approach is not always available
and precludes using large numbers of queries to evaluate
the overall methodology. Thus, we developed an approach
to find the A(rtificially)C(onstructed)-answer set of a query
automatically. The AC-answer set is used to evaluate queries
with no human judgments of their search results (i.e., the
GO-related set, see Sect. 8.3). Through domain expert
evaluations of a small number of queries, we refined the
AC-answer set creation process, and manually verified its
correctness (see Sect. 8.4.2). The AC-answer set is then used
extensively in the experiments to evaluate a large number of
search query recall and precision scores for the GO-related
search term set.

8.4.1 AC-answer set construction

To construct an AC-answer set, we use an approach similar to
the pearl-growing search strategy [35,36]. That is, we locate
a highly-relevant paper set for a given query and expand
it iteratively through a highly compute-intensive expansion
process. Given a keyword query q, the database is queried
for papers using a text-based similarity measure, and papers
with similarity scores above a threshold t are included in
the initial answer set S1. By utilizing a high value of t , we
ensure that papers in S1 are highly relevant to the query term.
After initial construction, we expand S1 by using text- and
citation-based approaches.

Text-based expansion This approach uses the text-based sim-
ilarity measure to locate additional papers. Since a paper in
S1 is highly relevant to the keyword query, papers that are
highly similar to the paper in S1 are potentially relevant to
the query. Thus, papers with high similarity scores to S1’s
centroid or a paper in S1 are added to the AC-answer set.

Citation-based expansion This approach expands the AC-
answer set with citations of a paper in S1. Since a paper
usually cites or is cited by other papers that are relevant to
it, citations of a paper in S1 are potentially relevant to the
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query term. There are two approaches involving the citation-
based expansion: Radius-k expansion and Citation-similar-
ity-based expansion. Each approach is elaborated as follows.

Radius-k expansion Given a paper p, papers in the radius-k
of p are defined as papers on a citation path of length at most
k starting or ending at p. We first start with k = 1, i.e., the
initial possible answer set (E) includes papers that cite or
are cited by a paper in S1. The following criteria determine
a paper in E’s relevancy to the query:

(i) A paper that cites or is cited by a large number of papers
in S1 is relevant to the query

(ii) A paper that cites or is cited by most of the papers in
our database is less relevant to the query term.

Based on the above criteria, a citation-based expanding
score, which is used to filter out irrelevant publications from
E , is computed as follows:

Expanding_Score(p) = w1 · CBC_Score(p)

+w2 · Expected_Relevancy(p)

(8.4)

where p is a paper in E, w1 andw2 are weights of CBC_Score
(citation-basedconnectivityscore)and Expected_Relevance,
respectively, and w1 + w2 = 1,
CBC_Score(p) is computed as

CBC_Score(p) = CC(p, S1)

|S1| (8.5)

where CC(p, S1) is the number of papers in S1 that cite or
are cited by p.
Expected_Relevancy(p) is computed as

Expected_Relevancy = CC(p, S1)

CC(p, Sall)
(8.6)

where CC(p, S1) is the number of papers in S1 that cite or
are cited by p, and CC(p, Sall) is the number of papers in the
database that cite or are cited by p.

CBC_Score satisfies the first criterion (i) above, which
increases the score of a paper that cites or is cited by a large
number of papers in S1. Expected_Relevancy satisfies the
second criterion (ii) above, which decreases the score of a
paper that cites or is cited by a large number of papers in the
database.

Finally, only papers in E with high Expanding_Score val-
ues (Eq. (8.4)) are added to the AC-answer set.

To further increase the size of the AC-answer set, we
expand S1 by a path of length 2 (i.e., radius-2 expansion).
However, in this case, the number of citations may become
large, and many citations may not be relevant to the query
term. To eliminate such citations, we introduce a paper set
S2 to filter out irrelevant citations. S2 is a set of papers retur-
ned from existing keyword-based search engines. In the case

of PubMed papers, we utilize Entrez Programming Utilities’
web service [17] to retrieve S2 from the given query term.
Then, only those papers in a citation path of length 2 and
appearing in S2 are added to the AC-answer set. Although
S2 may contain some papers that are not highly relevant to
the query term, and citation paths of length longer than one
usually lose context, the appearance of a paper p in S2and a
citation path of length 2 significantly increases p′s potential
to be in the true answer of the search query.

Citation-similarity-based expansion Citation similarity [27]
is computed using co-citation [28] and bibliographic cou-
pling [29]. Bibliographic coupling gives a high similarity
score to a pair of papers (p1, p2) with large numbers of com-
mon citations. Co-citation gives a high similarity score to a
pair of papers (p1, p2) if the number of papers that cite both
p1 and p2 is large. In this approach, publications in the data-
base with high citation similarity scores to a publication in
S1 are added to the AC-answer set. Citation similarity [27]
is computed as follows:

SimCitation(p1,p2) = BibWeight ∗ Simbib(p1,p2)

+(1- BibWeight) ∗ Simcoc(p1,p2)

(8.7)

where p1 and p2 are publications, p1 ∈ S1, p2 /∈ S1, Simbib

is the bibliographic coupling score, Simcoc is the co-cita-
tion score, BibWeight is the bibliographic coupling weight,
CocWeight = 1-BibWeight is the cocitation weight, and 0 ≤
BibWeight ≤ 1. Simbib is defined as

Simbib(P1, P2) = (#common citations between P1 and P2)

MaxB
(8.8)

where MaxB is the maximum number of common citations
between any pair of papers in the database.

Simcoc is defined as:

Simcoc(P1, P2) = (#papers that co-cite P1 and P2)

MaxC
(8.9)

where MaxC is the maximum number of papers that co-cite
any pair of papers in the database.

8.4.2 AC-answer set verification

We manually verified the AC-answer set accuracy in terms
of precision (see Sect. 8.2 for the definition of the recall and
precision). Recall was not used for evaluation because it is
not feasible to scan through all the papers in the database
(∼ 72,000 papers) to find all the correct answers of a given
query term.

We randomly chose 10 search terms from the GO-related
search term set (see Sect. 8.3) as a test set. We constructed
the AC-answer set for each search term in the test set. Since
the number of papers in the AC-answer set can be large
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(>100), we randomly selected 20 papers in each AC-answer
set for evaluation, i.e., approximately 200 full-text publica-
tions were involved in the manual evaluation.

Using the above criteria to select the test instance, the
AC-answer sets are found to be at least 95% accurate. From
our manual evaluation, the “noise” of the expansion (i.e.,
changes in the accuracy due to the expansion) depends on
the choice of the initial set (S1). More specifically, when S1

includes only papers with high similarity scores to the query
(i.e., the threshold for S1 is high), papers retrieved after the
expansion steps are at least 95% accurate. When relaxing the
threshold for S1, accuracy is reduced both in the initial set S1

and in the paper set from the expansion step. Also, all of the
expansion steps from the high-threshold S1 produce results
with higher accuracy than S1 itself with lower threshold. We
also evaluate the effect of the 5% AC-answer set error in
Sect. 9.3.

One may reason that, since in our experimental evalua-
tions of the context-based approach, we use the AC-answer
set, why not use it directly as the search output? This is
neither feasible, nor as informative as the CBS approach:
first, the context-based search framework presented in this
paper controls paper topic diversity tightly and in an explicit
manner, and reduces search output size. Therefore, the over-
all context-based search approach is much more informative
and richer than the AC-answer set. Second, the AC-answer
set is computationally very expensive. More specifically, the
expansion steps from the initial answer set involve a large
number of computations including (1) the paper similarity
measures between each paper in the initial set and the papers
in the database, and (2) the citation score computation for
each citation from the initial set. Thus, the AC-answer set,
while very useful for evaluation purposes, is not practical
to use as a search technique for literature digital collection
search engines.

9 Experimental results

In this section, we compare recall, precision, and/or harmonic
mean of recall and precision (F1) of selected search terms
from the GO-related and MeSH search term sets (as described
in Sect. 8.3) when performing different context-based search
approaches.

Given a keyword query q, steps to perform CBS and
CBS_all query searches in the experiments are as follows:
(1) select contexts automatically from the search term; (2)
search within selected contexts (CBS) or search across all
papers (CBS_all); (3) rank search results within the selected
contexts; and (4) merge search results from different contexts
into a single result set. In most of the experiments, we used
only merged search results since the accuracy before and after
merging results are found not to be statically significantly
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Fig. 6 Accuracy of context-paper classification approaches (direct
evaluation)

different. More specifically, from an analysis of variance
(ANOVA) of the harmonic mean of recall and precision (F1)
before and after merging search results with scores above
different cutoff thresholds, the analysis shows p > 0.05 for
every threshold value.

We first evaluate the accuracy of text- and pattern-
matching-based approaches that we used to classify papers to
contexts. Then, we test the accuracy difference when chang-
ing weights of the formulas proposed in this paper. Next,
we measure the effect of 5% incorrect AC-answer set. We
then measure the goodness of the query context selection
approaches presented in Sect. 5. Finally, we compare our con-
text-based search approach with search results from PubMed
and an alternative search-and-distribute to contexts (SDC)
approach.

9.1 Comparison between text- and pattern-based
p-cluster sets

In Sect. 4, we proposed two approaches to classify papers
to their relevant contexts, namely, text-based and pattern-
extraction-based approaches. In this section, we compare the
accuracy of the text-based p-cluster set to the pattern-based
p-cluster set using (1) direct evaluation on a small number
of papers and contexts, and (2) precision versus recall curves
using search terms in the GO-related set and the MeSH set
(see Sect. 8.3).

In the direct evaluation, we randomly selected 10 con-
texts (GO terms). For each selected context, we randomly
selected 10 papers from the text-based p-cluster set and 10
papers from the pattern-based p-cluster set (i.e., the evalua-
tion covers approximately 200 papers). In each context, each
paper was evaluated by an expert as being relevant or irrele-
vant to the context. We compute the accuracy of each context
as follows:

Accuracy(ci ) = (# papers being judged as relevant)

10
(9.1)

Figure 6 presents the results of the direct evaluation.
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Observations

• Out of 10 contexts, 7 (text-based p-cluster set) and 8
(pattern-based p-cluster set) contexts receive high accu-
racy (> 0.7).

• On the average, the pattern-based approach yields slightly
better accuracy than the text-based approach.

The reason that p-clusters of some contexts are not highly
accurate is that we utilized the Porter stemming algorithm
[37] to reduce each term in the papers and contexts to its
linguistic root form, and some domain-specific terms were
incorrectly reduced to more general terms. Therefore, incor-
rect classifications do occur. For example, the GO term rep-
resenting context 1 is “Activin Complex”, and the Porter
stemming algorithm reduces the term “activin”, a polypep-
tide growth factor, to “active”. This problem would probably
occur in other domains when reduced forms of both com-
mon adjectives/nouns (e.g., active) and specific terms (e.g.,
activin) are the same. However, the negative effect of this
problem would be minimal for domains whose terms are
highly scientific names, such as chemical metabolite names
in ChEBI ontology [65], a hierarchically organized dictio-
nary of molecular entity names. As an example, applying
Porter Stemming on “glucose” or “zinc” would not have neg-
ative effects in terms of turning a specific term into a general
term.

For the second evaluation that involves all the papers in
all contexts, Figs. 7 and 8 illustrate average precision versus
recall values when performing context-based searches (i.e.,
CBS and CBS_all, see Sect. 6) using search terms in the
GO-related set and the MeSH set, respectively.

Observations

• For the CBS_all approach, text- and pattern-based
approaches produce comparable accuracy.

• For the CBS approach, pattern-based p-cluster set yields
up to 15% higher precision at moderate recall values.

With respect to the accuracy, pattern-based p-cluster set
is better than text-based p-cluster set although the accuracy
difference is not highly significant. Thus, experiments in the
remaining sections were performed using only the pattern-
based p-cluster set. However, as mentioned in Sect. 8.1, the
pattern-based p-cluster creation is more expensive than the
text-based p-cluster creation. Therefore, the text-based
approach can be used as an alternative.

9.2 Effect of varying weights

Weights and formula thresholds presented in this paper are
chosen by evaluating multiple CBS query result sets. And,
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Fig. 7 Average precision versus recall curve for GO-related search
term set: a CBS and b CBS_all

the best weights are used in the experiments. For example,
steps to select the weights are as follows:

(i) Perform CBS searches using query terms selected in
Sect. 8.3. Other weights are fixed while weight wi var-
ies. For example, we tested [wcentroid, wContextTerm] of
Eq. (5.1) with the values of [x, y] where x ≥ 0.6 and
y ≤ 0.4.

(ii) Compute the average recall and precision scores for
each weight wi .

(iii) Select wi that yields the best results, i.e., both recall
and precision scores are high on average for the selec-
ted wi .

Although we selected the best weights for the experiments,
we found that the results are not sensitive to the weights
for most cases, i.e., the accuracy differences when chang-
ing weight values are not statistically significant (i.e., p >

0.05). Table 2 shows an analysis of variance (ANOVA) of the
harmonic mean (F1) of recall and precision of search results
at top 75, 50, and 10% of the CBS approach when using five
different values of [wcentroid, wContextTerm] of Eq. (5.1) and
[wPaperRelevancy, wContext] of Eq. (7.1). Note that we show
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Fig. 8 Average precision versus recall curve for MeSH search term
set: a CBS and b CBS_all

only the results from the MeSH search term set since the
results from the GO-related search term set are similar.

9.3 Effect of incorrect AC-answer set

As evaluated in Sect. 8.4.2, the AC-answer set of query term t
may contain up to 5% incorrect query results. Therefore, the
best case (i.e., the most accurate recall and precision compu-
tations) occurs when the AC-answer set of t is 100% correct.
For the best case, Eqs. (8.1) and (8.2) are used to measure the
accuracy. The worst case recall and precision occur when (1)
the AC-answer set of tcontains 5% incorrect results, and (2)
all the incorrect results are included in the search results of t .
In other words, all of the 5% incorrect search results are mis-
judged as being correct. The worst-case recall and precision
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Fig. 9 Average precision versus recall when including 5% incorrect
AC-Answer set results

are defined as

Recallt = |St ∩ Rt | − (|Rt | ∗ 0.05)

|Rt | − (|Rt | ∗ 0.05)
(9.2)

Precisiont = |St ∩ Rt | − (|Rt | ∗ 0.05)

|St | (9.3)

where St is the search result set for term t , and Rt is the
AC-answer set of t .

To incorporate the effect of these incorrect search results,
we compare the best case with the worst case recall and
precision scores. Figure 9 illustrates the results of the CBS
approach.

Observation
When search results include 5% incorrect AC-answer set
results, the accuracy of search results decreases 5%, on the
average, and 18% at the maximum (only at the lowest recall
value).

From the experimental results, the worst case and the best
case accuracy are not significantly different. Therefore, we
use only the best case scores to evaluate the accuracy of
search results in the experiments.

9.4 Comparing text-based and context-keyword-based
query context selections

In this experiment, we compare two different approaches,
namely, text-based approach (as described in Sect. 5.1) and
context-keyword-based approach (as described in Sect. 5.2)

Table 2 ANOVA analysis of varying weights

Top-75% Top-50% Top-10%

[wcentroid, wContextTerm] F(4, 850) = 0.025, p = 0.99 F = 0.057, p = 0.98 F = 1.04, p = 0.38

[wPaperRelevancy, wContext] F(4, 850) = 0.001, p = 0.99 F = 0.004, p = 0.99 F = 0.004, p = 0.99
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Fig. 10 Average precision versus recall curve for GO-related search
term set
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Fig. 11 Average precision versus recall curve for MeSH search term
set

for query context selection. The following criteria determine
the goodness of query contexts of query term t .

(i) Recall and precision of search results are high.
(ii) P-clusters of the query contexts subsume all correct

search results of t . In other words, we are able to find
all the correct search results by searching within the
query contexts.

(iii) The set of selected query contexts is minimal, i.e., the
selected set contains only contexts where the correct
paper results of t reside in.

(iv) The number of unique papers in the query contexts’
p-clusters is much smaller than the number of all pap-
ers in the database, i.e., search input size is reduced.

Figures 10 and 11 illustrate average precision versus recall
curves of the CBS search results.

Observations
Text-based context selection approach possesses approxi-
mately 5% higher accuracy than context-keyword-based con-
text selection approach.
The following steps are used to evaluate criteria (ii), (iii), and
(iv).

For each search term t ,

(a) Apply each query context selection approach and
retrieve a set of query contexts SQt

(b) Retrieve all the unique papers of all the contexts in SQt ,
called PQt

(c) Compute the Subsumption Score of PQt , which is defi-
ned as:

Subsumption_Score(PQt ) = |PQt ∩ Rt |
|Rt | (9.4)

where Rt is the AC-answer set (GO-related search term
set) or the correct answer set (MeSH search term set)
of t . Criterion (ii) is satisfied if the subsumption score
approaches 1, i.e., PQt includes most of the papers in
the correct answer set of t .

(d) Compute the Minimality Score of SQt , which is defined
as

Minimality_Score(SQt ) = |SQt ∩ SCt |
|SQt | (9.5)

where SCt is a set of all contexts that contain a paper in
the correct answer set of t . Criterion (iii) is satisfied if
the miminality score gets closer to 1.

(e) Compute the Ratio Score of PQt , which is defined as

Ratio_Score(PQt ) = |PQt |
|PAll | (9.6)

where |PAll | is the number of papers in the database
(i.e., 72,027). Criterion (iv) is satisfied when the ratio
is close to 0. As explained in criterion (iv), we expect
the size of PQt to be small compared to all the papers
in the database.

Tables 3 and 4 show the results of criteria (ii)–(iv) evaluation.

Observation

(1) In terms of correct result subsumption, the text-based
approach is up to 8% better than the context-keyword-
based approach.

(2) The minimality score of the text-based approach is up to
10% higher than the context-keyword-based approach.

(3) The search input size of the text-based approach is up
to 5% larger than the context-keyword-based approach.
However, both approaches reduce search input size by
at least 50%.

From experimental results, the text-based approach satis-
fies criteria (i)–(iii) slightly better (<10%) than the context-
keyword-based approach, but the context-keyword-based
approach possesses slightly better (<5%) criterion (iv).
Therefore, we conclude that the text-based approach is over-
all slightly better than the context-keyword-based approach.
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Table 3 Statistics of query context selection approaches (GO-related
search term set)

Query context selection approach

Text-based Context-keyword-based

Mean subsumption score 0.85 0.82

Median subsumption score 0.91 0.88

Mean minimality score 0.53 0.52

Median minimality score 0.51 0.47

Mean ratio score 0.46 0.44

Median ratio score 0.51 0.46

Table 4 Statistics of query context selection approaches (MeSH search
term set)

Query context selection approach

Text-based Context-keyword-based

Mean subsumption score 0.72 0.66

Median subsumption score 0.81 0.73

Mean minimality score 0.71 0.66

Median minimality score 0.8 0.70

Mean ratio score 0.41 0.39

Median ratio score 0.4 0.39

Therefore, all of the experiments were performed using only
the text-based approach.

9.5 Comparing context-based results against PubMed
results

Using queries from the GO-related search term set, we com-
pare recall and precision scores from the CBS approach to
PubMed’s general keyword-based search. Papers that are in
PubMed search results but not in our database are filtered out
before evaluations. Note that, queries (MeSH terms) from
MeSH set are not used because we collected the correct ans-
wers of this set from PubMed (as discussed in Sect. 8.3);
thus, PubMed will return all papers that are marked up with
the MeSH term as search results when we use that MeSH
term as the search term.

While this experiment’s CBS results include only papers
with scores above a certain threshold t, PubMed search
results include all papers since PubMed lacks a scoring func-
tion. We selected three sets of cutoff thresholds. The first set
(t ≤ 0.1, or low threshold values) contains a large number
of results (i.e., at least 30% of all results). With the first set,
we expect high recall. The second set (0.15 ≤ t ≤ 0.3, or
moderate threshold values) contains a moderate number of
search results. We expect high F1 for the second set. The last
set (t ≥ 0.35) contains high ranking results, and we expect
high precision for this set. Table 5 shows the average num-

Table 5 The average number of papers returned from PubMed, CBS,
and CBS_all

Threshold CBS CBS_all PubMed

0.05 2689 2892 1466

0.1 796 893

0.15 230 288

0.2 117 160

0.25 66 100

0.3 44 71

0.35 31 53.86

0.4 23 41

0.45 18 32

0.5 14 30
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Fig. 12 Average recall and precision of PubMed search, CBS, and
CBS_all

ber of papers from PubMed, CBS, and CBS_all approaches.
Figure 12 compares the average recall and precision scores
of PubMed, CBS, and CBS_all approaches. Figure 13 illus-
trates the average F1 scores of the three approaches.

Observations

(1) At t > 0.15, PubMed recall is higher than the context-
based (CBS and CBS_all) recall. This is due to PubMed
searching and returning more papers on average than the
context-based search approaches.

(2) The context-based approaches produce approximately
50% higher precision at high thresholds and approxi-
mately 20% higher precision at moderate thresholds.

(3) At moderate thresholds, the context-based approaches
yield approximately 25% higher F1 scores than Pub-
Med. Moreover, from Table 5, the number of context-
based search results at moderate thresholds are much
smaller (approximately 10 times) than PubMed search
results.
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Fig. 13 Average F1 scores of PubMed search, CBS, and CBS_all

Since most web search engine users stop looking at search
results after the second page [3], high recall for a large num-
ber of search results is less significant than high precision
for high-ranking results and high F1 scores for a reasonable
number of search results. Similarly, for a large literature dig-
ital collection (e.g., PubMed), achieving high precision and
high F1 scores is more important than achieving high recall.
Experimental results in this section show that the context-
based search approach effectively ranks search results while
decreasing the number of papers returned when using cutoff
thresholds.

9.6 Comparing CBS results against alternative
context-based results

This section compares search results from our context-based
approach to an alternative approach, called search-and-dis-
tribute to contexts (SDC) approach. Steps to perform the SDC
approach are as follows:

1. Perform pre-processing steps to classify papers with
scores to contexts (as discussed in Sect. 4)

2. Search across all papers to retrieve search results
3. Retrieve involved contexts, which are selected as all con-

texts that the paper results reside in
4. Rank paper results within the contexts using the formula

presented in Sect. 6 and return

The difference between the CBS and the SDC approach
is that the SDC approach organizes search results into con-
texts based on whether or not the results reside in the con-
texts, while the CBS approach selects relevant contexts based
on the relevancy to the query. Moreover, the CBS approach
allows users to modify query contexts before viewing search
results. As mentioned in Sect. 3, several existing context-
based information retrieval systems (e.g., [15,26,48–50]) cat-
egorize search results into all possible contexts, and, these

systems are comparable to the SDC approach. However, these
systems either are implemented on different data sets (i.e.,
web documents) [26,48–50] or do not provide scores to rank
search results [15]. Therefore, we used the SDC approach
to compare with our context-based approach in this section.
Since the merging algorithm (as described in Sect. 7) cannot
be applied directly to the SDC approach, we use non-merged
search results for the experiment in this section for both CBS
and SDC approaches. Tables 6 and 7 summarize the sta-
tistics on the average number of involved contexts and the
average number of search results, respectively. Figures 14
and 15 illustrate the average recall and precision scores of
both approaches. Note that the recall and precision charts
of both GO-related and MeSH search term sets are similar;
therefore, we show in Figs. 14 and 15 only the results from
MeSH search term set.

Observation

(1) From Table 6, the number of contexts returned from
the SDC approach (i.e., contexts that all search results
reside) is very large. Therefore, it is not practical for
the user to navigate through search results using this
large set of contexts. On the other hand, our automatic
context selection technique ranks contexts based on the
relevancy to the query (as discussed in Sect. 5), and thus
significantly reduces the number of involved contexts.

Table 6 The average number of involved contexts for the CBS and
SCD approaches

Threshold GO-related set Mesh set

CBS SDC CBS SDC

Avg. no. contexts 214 2225 162 3979

The number of query contexts of the CBS and CBS_all are the same

Table 7 The average number of search results for the CBS and SDC
approaches with different threshold (t)

Threshold GO-related set Mesh set

CBS CBS_all SDC CBS CBS_all SDC

0.05 1517 1726 2505 939 998 1568

0.1 394 499 633 190 209 283

0.15 168 243 265 76 86 93

0.2 90 140 150 48 54 56

0.25 59 98 102 37 41 41

0.3 42 72 74 29 32 32

0.35 31 55 57 24 26 27

0.4 24 44 47 20 21 22

0.45 18 36 38 17 18 18

0.5 15 30 32 14 15 15
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Fig. 15 Average precision of CBS, CBS_all, and SDC

(2) On the average, the number of papers returned from the
SDC approach is 30% higher than the CBS approach
and 10% higher than the CBS_all approach.

(3) At low thresholds, the SDC approach produces approx-
imately 10% higher recall than the CBS approach. At
moderate and high thresholds, all approaches provide
comparable recall.

(4) At low threshold, the CBS and CBS_all approaches pro-
duce up to 10% higher precision than the SDC approach.
At moderate threshold, all approaches provide compa-
rable precision. At high threshold the CBS approach
yields approximately 5% higher precision than the SDC
approach.

Although recall and precision of the CBS (and CBS_all)
and the SDC approaches are not significantly different, the
CBS approach is superior to the SDC approach in the sense
that it significantly reduces the number of papers returned
as well as the number of involved contexts to include only
contexts that are relevant to the query and are of interest to
the users.

10 Conclusions and future work

At the present time, a major problem in searching litera-
ture digital collections within digital libraries is the lack
of effective paper scoring and ranking systems. For a key-
word-based search, a number of returned papers can be very
large. Search results may also contain various topics, not
all of which are of interest to users. In order to solve the
above-summarized problems, we proposed a context-based
searching paradigm for literature digital collections. In our
approach, a context defines one or more paper topics,
and contexts are related to each other through a context
hierarchy.

In our approach, we use well-defined ontology terms as
contexts, and papers are classified into contexts through a
pre-processing step using text- or pattern-extraction-based
techniques. Context scores are also assigned to papers within
each context, where high context scores mean papers are
highly relevant to a given context. After a user specifies a
query term, we present to the user a set of contexts that are
relevant to the query. Then, the user can manually modify
the set of selected contexts. Search is performed within the
selected contexts, and search results are ranked and returned
to the user based on the matching strength to the query and
their context scores.

Our context-based approach improves various shortcom-
ings of the present search methods as follows:

• Since papers are classified to relevant contexts through a
pre-processing step, the complete paper-context informa-
tion is available before performing a search. After users
define search queries, the queries are automatically mat-
ched against context information, and only relevant con-
texts are presented to the users. With this information,
the users can define a scope on contexts of interest before
viewing search results. Thus, the selected contexts are
highly meaningful since they are (1) relevant to the que-
ries and (2) interesting to the users. In contrast to many
existing categorization techniques, context-based search
results are grouped within only interesting contexts as
opposed to a large number of all possible various topics
(contexts). This solves the topic diffusion problem across
search results.

• Using recall and precision analysis, we evaluated our
approach and compared it to other approaches. Experi-
mental results demonstrate that our approach produces
comparable recall for a large set of search results and
higher precision for high ranking papers. Moreover, the
number of search results and contexts returned are much
smaller in our approach. For any keyword-query executed
on a search engine, most users view only top results.
Therefore, high precision for high ranking results is
crucial.
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• Our context-based approach is general and can be applied
to other domains.
• Context-based search engine allows any set of key-

words as opposed to some systems that allow only
specific types of keywords (see Sect. 3 for details).

• Although we initially group search results within the
contexts that they belong to, if the user likes the tra-
ditional approach and wants to view only single ran-
ked list of search results, we provide an approach to
merge relevancy scores from different contexts into
one final score, and use the new scores to rank search
results.

• We present ways to generalize paper classification
techniques to non-domain-specific methods that do
not utilize any specific properties of the associtated
ontology. Thus, our approach can be applied to any
sets of papers and contexts.

All in all, the main assets of the context-based approach
when compared to existing approaches are the accuracy
improvement, the topic diffusion and output size reduction,
and the generality of the approach.

Although we present a complete context-based search
framework, there is still room for further improvement. First,
as discussed in Sect. 9.1, p-clusters of some contexts are
not highly accurate because of incorrect term stemming for
domain-specific terms. The simple stemming algorithm that
we used needs to be replaced by a more complex and spe-
cific algorithm that differentiates domain-specific terms from
general terms.

Second, in this paper, we have evaluated the context-based
search approach on genomics-based PubMed publications
and Gene Ontology hierarchy. The context-based search
approach can also be applied to other publication domains
using other domain-specific ontologies as contexts. For
example, computer science papers can be used as a testbed,
and a possible computer science-related context hierarchy is
the ACM Computing Classification System [58]. By chang-
ing publication and context domains, there are two ways to
assign papers to contexts: (1) using semantic properties of the
ontology, or (2) using our generalized approach (as discussed
in Sect. 4.4). Other steps of our approach, i.e., selecting query
contexts, ranking search results, and merging search results,
can be applied directly to other domains.

Another future research direction is to investigate the
effectiveness of other variations on context score compu-
tations (see Sect. 4.3 and [23]). For example, the text-based
context score of a paper in a context may be modified as
the similarity between the paper and the centroid of all of
the documents in the context. For the citation-based context
score function, instead of omitting citation relationships from
different contexts during context score computations, we can
assign weights to these relationships. In other words, citation

relationships from other contexts can boost context scores of
the papers in a given context [23].

Yet another direction is to improve the automatic context
selection techniques (as described in section 5) by using a
learning mechanism. When a user performs a context-based
search, he/she first enters a search term. Then our system pro-
vides a list of potentially relevant contexts, which the user
further modifies. If we cache the user-selected contexts of a
given search query, those contexts can be potentially highly
relevant to the query. Since the number of contexts of a given
query can be quite large, which contexts to keep also needs
to be investigated.

Glossary

AC-answer set Artificially constructed answer set
of a query. The AC-answer set is
used as a correct answer set of a
query when the actual correct ans-
wer set is not available

CBS Context-based search approach
which involves the following steps:

(1) Classify papers to contexts and
assign context scores to papers

(2) Select query contexts to search
for

(3) Search within the selected con-
texts

(4) Rank search results within the
contexts and/or merge search
results into one list

CBS_all Context-based search approach
that involves all papers, as oppo-
sed to papers in selected contexts.
Steps to perform the CBS_all are
as follows:

(1) Classify papers to contexts and
assign context scores to papers

(2) Select interesting contexts
(3) Search across all papers to

retrieve search results
(4) Rank search results within the

contexts and/or merge search
results into one list. For search
results that are in the selected
contexts, rank them with res-
pect to the contexts. Search
results that are not in the selec-
ted contexts are assigned to a
remainder context

Context score of a paper A context score of a paper within
a context indicates the level of rel-
evancy (importance) of the paper
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with respect to the context. In each
context, papers with high context
scores are highly relevant to the
context

GO Gene ontology [2]. GO provides
controlled vocabularies that des-
cribe gene and gene products in
terms of their biological processes,
cellular components, and molecu-
lar functions

MeSH Medical subject headings [34], the
national library of Medicine’s con-
trolled vocabulary thesaurus

Paper set of a context See p-cluster set of a context
p-Cluster set of a context A p-cluster set of a context is a set

of papers that are classified to the
context because they are relevant
to the context

PubMed PubMed is a literature digital lib-
rary containing more than 14 mil-
lion biomedical publications

Query contexts Query contexts are contexts that
are selected automatically or man-
ually by users as being relevant to
the query. Search results are grou-
ped within the query contexts to
reduce the topic diffusion problem
across search results

SDC An alternative context-based sea-
rch approach, which involves the
following steps:

(1) Classify papers to contexts and
assign context scores to papers

(2) Search across all papers to
retrieve search results

(3) Select all contexts that contain
the query paper results

(4) Rank search results within the
contexts

Topic diffusion Topic diffusion across search res-
ults means that publications retur-
ned by a keyword-based search
query often fall into multiple topic
areas, not all of which are of inter-
est to users
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